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Logistics

o Course website: https://krmopuri.github.io/d1l/

Dept.of Al, IITH
Deep Learning

Jan-May 2023
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Viay 2023

Deep Learning

Updates

» December 28, 2022: The course website is up!

Course Description

Deep Learning has lately become the driving force behind numerous high-performing AVML products deployed in real-world

across diverse disciplines. Tech gaints such as Google, Microsoft, Facebook, A have strongly been employing the Deep
Learning workforce in the past few years for developing uter Vision, Nai
Hence, it has become one of the most sough after learning couirses in recent times. In this predominantly theory course, we will
discuss the various building blocks required to realize the D

ral Processing, etc

vid

Learning based solutions.
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https://krmopuri.github.io/dl/

Evaluation

Assignments - 40% (best 4 of 5; 1 for each of the first 5 segment)
Mid-1 (First week of Feb; after the 2nd segment) - 15%

Mid-2 (Last week of March; after the 4th segment) - 15%
Endsem - 30%
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o Will update soon!
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o Broadly: Building blocks of the Deep Learning based solutions
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Contents \Il\
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o Broadly: Building blocks of the Deep Learning based solutions

o Specifically: Please visit the website!
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Why Deep Learning?

Deep Learning drives the recent Al boom. Image Source: Artificial Intelligence
Magazine
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Textbooks and References

o Lot of online resources

o Deep Learning textbook by lan Goodfellow et al.

Deep Learning: Methods and Applications, by D. Li and D. Yu
NPTEL course on Deep Learning by Prof. Mitesh Khapra, [ITM
Michael Nielsen's text book on NN & DL

DL course by Francois Fleuret, Uni. of Geneva

PyTorch - https://pytorch.org/

Many more that | could not list and am not aware of...
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What is DL?
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What is DL? |I.l|
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Subset of ML that is essentially Artificial Neural Networks with more layers
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What is DL? |I.l|
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o Crude attempt to imitate the human brain in learning
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Classical ML vs. DL

o Classical ML: Handcrafted features + learnable model

o Need strong domain expertise
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Classical ML vs. DL |I.l|

o Classical ML: Handcrafted features + learnable model

o Need strong domain expertise

Machine Learning
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Input Feature extraction Classification Output

Figure credits: Jay Shaw & Quora
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Classical ML vs. DL

o Deep Learning: Deep stack of parameterized processing

o End-to-End learning
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Classical ML vs. DL

o Deep Learning: Deep stack of parameterized processing

o End-to-End learning

& — 37 — Il

Input Feature extraction + Classification Output

Figure credits: Jay Shaw & Quora

Dr. Konda Reddy Mopuri dl-0/Introduction

15



Classical ML vs. DL

o ANNs predate some of the classical ML techniques

o We are now dealing with a new generation ANNs
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Neuron

o About 100 billion neurons in human brain

Gell body

Sj'ﬂapljcminars

Figure credits: Wikipedia
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History of Neural Networks

@ McCulloch Pitts neuron (1943) - Threshold Logic Unit
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History of Neural Networks

@ McCulloch Pitts neuron (1943) - Threshold Logic Unit

Donald Hebb (1949) - Hebbian Learning Principle

@ Marvin Minsky (1951) - created the first ANN (Hebbian Learning, 40
neurons)

@ Frank Rosenblatt (1958) - created perceptron to classify 20X20
images

® David H Hubel and Torsten Wiesel (1959) demonstrated orientation
selectivity and columnar organization in cat’s visual cortex

®
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Backpropagation

o Paul Werbos (1982) proposed back-propagation for ANNs
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History (contd.) [T
@ Neocognitron by Fukushima (1980) =7

Dr. Konda Reddy Mopuri dl-0/Introduction 20



History (contd.) |I.l|

@ Neocognitron by Fukushima (1980) =7
@ Implements the Hubel and Wiesel's principles

Dr. Konda Reddy Mopuri dl-0/Introduction 20



History (contd.) |I.l|

@ Neocognitron by Fukushima (1980) —
@ Implements the Hubel and Wiesel's principles
@ Used for hand-written digit recognition

Dr. Konda Reddy Mopuri dl-0/Introduction 20



History (contd.) |I.l|

@ Neocognitron by Fukushima (1980)
@ Implements the Hubel and Wiesel's principles
@ Used for hand-written digit recognition

@ Viewed as precursor for the modern CNNs
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History (contd.) |I.l|
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@ Network for TC problem

Output
Unit

Hidden
Units

Input
Units
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@ Network for TC problem
@ Rumelhart (1988) trained with backprop
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History (contd.) |Il|
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@ Network for TC problem
@ Rumelhart (1988) trained with backprop
@ Showed that hidden units learn meaningful representations

Output
Unit

Hidden
Units

Input
Units
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History (contd.)

@ LeNet family (Lecun et al. 1989) is a “convent”

10 output units

fully connected
~ 300 links
layer H3

30 hidden units fully connected

~ 6000 links
layer H2 .
12 x 16=192 ;, ; L& )
hidden units ’ % ~ 40,000 links
from 12 kernels
5x5x8
layer H1
12 x 64 = 768
hidden units
H1.1
~20,000 links

from 12 kernels

55)(5

256 input units
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History (contd.)

@ LeNet family (Lecun et al. 1989) is a “convent”

@ Very similar to modern architectures

10 output units
fully connected

~ 300 links

layer H3

30 hidden units fully connected

~ 6000 links

layer H2

12 x 16=192 ., 4 .

hidden units ’ 40,000 links
rom 12 kernels
5x5x8

layer H1

12 x 64 = 768

hidden units
H1.1
~20,000 links

from 12 kernels

55)(5

256 input units
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History (contd.)

@ AlexNet (2012)

28 Max
pooling pooling
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History (contd.)

@ AlexNet (2012)

@ Network similar to LeNet5, but of far greater size

——
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History (contd.)

@ AlexNet (2012)
@ Network similar to LeNet5, but of far greater size

@ Implemented using GPUs
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History (contd.)

@ AlexNet (2012)

@ Network similar to LeNet5, but of far greater size

@ Implemented using GPUs

@ Could beat the SoTA image classification methods by a large margin
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History (contd.) |I.l|
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@ AlexNet initiated a trend of more complex and bigger architectures

UUU‘ T
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History (contd.) ||.l|
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@ AlexNet initiated a trend of more complex and bigger architectures
@ GoogleNet (2015) contains “inception” modules
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History (contd.) |I.l|

@ AlexNet initiated a trend of more complex and bigger architectures
@ GoogleNet (2015) contains “inception” modules

@ ResNet (2015) introduced “skip connections” that facilitate training
deeper architectures

[
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History (contd.) |I.l|
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@ Transformers (2017) are attention-based architectures

Output
Probabilties

‘Mult-Head
Attention

"Add & Norm
Masked

Nx

'Add & Norm
Feed
Forward

"Add & Norm

Nx

Mult-Head Mutti-Head
Attention Attention
L — —

Positional Positional
Encoding Encoding
Tnput Output
Embedding Embedding
Inputs Outputs

(shifted right)

Figure credits: Vaswani et al., 2017
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History (contd.)

@ Transformers (2017) are attention-based architectures
@ Very popular in NLP, and CV
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History (contd.)

@ Transformers (2017) are attention-based architectures
@ Very popular in NLP, and CV

@ Some of these models are extremely large. GPT-3 has 3 billion
parameters (Brown et al. 2020)
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Figure credits: Vaswani et al., 2017
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@ Natural generalization to ANNs - Doesn’t differ much from the 90s
NNs
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Deep Learning

@ Natural generalization to ANNs - Doesn’t differ much from the 90s
NNs

@ Computational graph of tensor operations that take advantage of
Chain rule (back-propagation)

SGD

GPUs

Huge datasets

Convolutions, etc.
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Deep Learning I.l
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o This generalization enables us to build complex networks that work
with Images, text, speech and sequences and train end-to-end
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Figure credits: Gershgorn, 2017
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What makes it work now?
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What makes it work now?

@ Huge research and progress in ML
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What makes it work now?

@ Huge research and progress in ML
@ Hardware developments - CPUs/GPUs/Storage technologies
@ Piles of data over the Internet

@ Collaborative development (open source tools and forums for
sharing/discussions, etc)

® Collective efforts from large institutions/corporations

@ ...
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What makes it work now?

o We have been doing a lot of ML already
o Taxonomy of ML concepts: Classification, regression, generative
models, clustering, etc.
o Rich statistical formalizations: Bayesian estimation, PAC, etc.
o Understood fundamentals: Bias-Variance, VC dimension, etc.
o Good understanding of optimization
o Efficient large-scale algorithms
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Deep Learning - practical perspective

@ Doesn’t require a deep mathematical grasp
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Deep Learning - practical perspective

@ Doesn’t require a deep mathematical grasp

@ Makes the design of large models a system/software development task
@ Leverages modern hardware

@ Doesn’t seem to plateau with more data

® Makes the trained models a commodity
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Compute getting cheaper
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Storage getting cheaper
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AlexNet to AlphaGo: 300000X

compute

Petaflogs/s-day (Training)

4 4
10 500MWh
® AlphaGoZero
10° <«—1.7M car km
® AlphaZero
5 120 kCHF
10° 4 ® Neural Machine Translation
@ Neural Architecture Search
10" 1 = TI7 Dota vl
Xception
10°
VGG ® DeepSpeech2
10-1 4 @Seq25eq  ® Resﬁefs
GTX 1080
10-2 ® GoogleNet for a day
® AlexNet ® Visualizing and Understanding Conv Nets
@ Dropout 5 kWh
10 34
10-4 4
® DQN
10°% T T " T T T
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Year

Figure Credits: Radford, 2018. 1 petaflop/s-day &~ 100 GTX 1080 GPUs for a day,

~ 500kwh
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Datasets |I.l|
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Data-set Year Nb. images Size

MNIST (classification) 1998 60K 12Mb

Caltech 101 (classification) 2003 9.1K 130Mb .
Caltech 256 (classification) 2007 30K 1.2Gb Data-set Year Size
CIFAR10 (classification) 2009 60K  160Mb S5T2 (sentiment analysis) 2013 20Mb
ImageNet (classification) 2012 12M  150Gb WMT-18 (translation) 2018 7Gb
MS-COCO (segmentation) 2015 200K 32Gb OSCAR (language model) 2020 6Tb
Cityscape (segmentation) 2016 25K 60Gb

Figure Credits: Francois Fleuret
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@
Implementation [
Language(s) License Main backer
PyTorch Python, C++ BSD Facebook
TensorFlow Python, C++ Apache Google
JAX Python Apache Google
MXNet Python, C++, R, Scala Apache Amazon
CNTK Python, C++ MIT Microsoft
Torch Lua BSD Facebook
Theano Python BSD U. of Montreal
Caffe C++ BSD 2 clauses U. of CA, Berkeley

Figure Credits: Francois Fleuret
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We use PyTroch for this course |I.l|
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O PyTorch

http://pytorch.org
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