

Deep Learning

0 Introduction and Course logistics

Dr. Konda Reddy Mopuri kmopuri@ai.iith.ac.in Dept. of AI, IIT Hyderabad Jan-May 2023

Time slot

B slot

Time slot

- B slot
- Monday 10 10:55 AM
- Wednesday 9 9:55 AM
- Thursday 11 11:55 AM

Time slot

- B slot
- Monday 10 10:55 AM
- Wednesday 9 9:55 AM
- Thursday 11 11:55 AM
- A-LH-1 (02.01.2023 to 15.01.2023 & 18.02.2023 to 02.05.2023), Auditorium (16.01.2023 to 17.02.2023)

Logistics

• Course website: https://krmopuri.github.io/dl/

Deep Learning / Jan-May 2023

· December 28, 2022: The course website is up!

Course Description

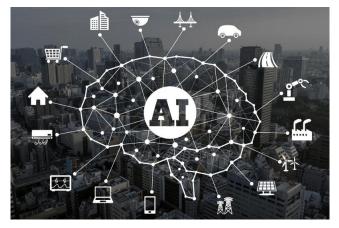
Deep Learning has lately become the driving force behind numerous high performing AI/ML products deployed in real-world across diverse disciplines. Tech gaints such as Google, Microsoft, Facebook, Amaton, etc. have strongly been employing the Deep Learning worlforce in the past few years for developing a wide range of applications in Computer Vision, Natural Processing, etc. Hence, It has become one of the most sough after learning courses in recent times. In this predominantly theory course, we will discuss the various building block required to realize the Deep Learning based solutions.

Evaluation

- Assignments 40% (best 4 of 5; 1 for each of the first 5 segment)
- $\bullet\,$ Mid-1 (First week of Feb; after the 2nd segment) $15\%\,$
- Mid-2 (Last week of March; after the 4th segment) 15%
- $\bullet~$ Endsem 30%

• Will update soon!

• Broadly: Building blocks of the Deep Learning based solutions


Contents

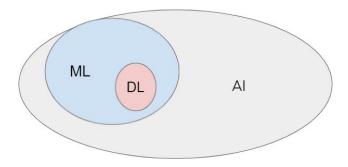
Broadly: Building blocks of the Deep Learning based solutionsSpecifically: Please visit the website!

Why Deep Learning?

Deep Learning drives the recent AI boom. Image Source: Artificial Intelligence Magazine

Textbooks and References

Lot of online resources


- Deep Learning textbook by Ian Goodfellow et al.
- ${\scriptstyle \circ}\,$ Deep Learning: Methods and Applications, by D. Li and D. Yu
- NPTEL course on Deep Learning by Prof. Mitesh Khapra, IITM
- Michael Nielsen's text book on NN & DL
- DL course by François Fleuret, Uni. of Geneva
- PyTorch https://pytorch.org/
- Many more that I could not list and am not aware of...

What is DL?

What is DL?

Subset of ML that is essentially Artificial Neural Networks with more layers

What is DL?

• Crude attempt to imitate the human brain in learning

- Classical ML: Handcrafted features + learnable model
- Need strong domain expertise

Classical ML vs. DL

- Classical ML: Handcrafted features + learnable model
- Need strong domain expertise

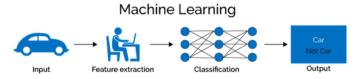


Figure credits: Jay Shaw & Quora

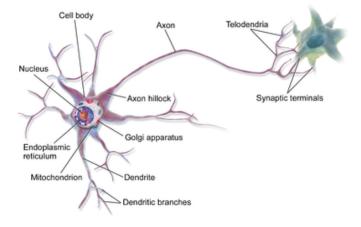
Dr. Konda Reddy Mopuri

- Deep Learning: Deep stack of parameterized processing
- End-to-End learning

- Deep Learning: Deep stack of parameterized processing
- End-to-End learning

Figure credits: Jay Shaw & Quora

Dr. Konda Reddy Mopuri



- ANNs predate some of the classical ML techniques
- We are now dealing with a new generation ANNs

Neuron

• About $100 \mbox{ billion neurons in human brain}$

Dr. Konda Reddy Mopuri

Figure credits: Wikipedia

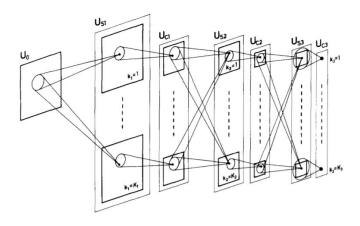
In McCulloch Pitts neuron (1943) - Threshold Logic Unit

- In McCulloch Pitts neuron (1943) Threshold Logic Unit
- 2 Donald Hebb (1949) Hebbian Learning Principle

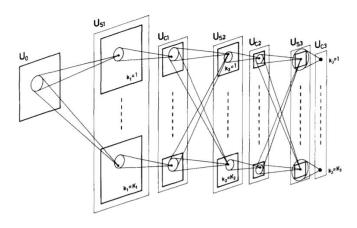
- In McCulloch Pitts neuron (1943) Threshold Logic Unit
- ② Donald Hebb (1949) Hebbian Learning Principle
- 3 Marvin Minsky (1951) created the first ANN (Hebbian Learning, 40 neurons)

- In McCulloch Pitts neuron (1943) Threshold Logic Unit
- ② Donald Hebb (1949) Hebbian Learning Principle
- 3 Marvin Minsky (1951) created the first ANN (Hebbian Learning, 40 neurons)
- Frank Rosenblatt (1958) created perceptron to classify 20X20 images

- In McCulloch Pitts neuron (1943) Threshold Logic Unit
- ② Donald Hebb (1949) Hebbian Learning Principle
- 3 Marvin Minsky (1951) created the first ANN (Hebbian Learning, 40 neurons)
- Frank Rosenblatt (1958) created perceptron to classify 20X20 images
- David H Hubel and Torsten Wiesel (1959) demonstrated orientation selectivity and columnar organization in cat's visual cortex


Backpropagation

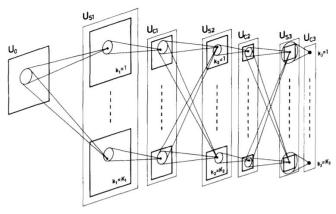
• Paul Werbos (1982) proposed back-propagation for ANNs



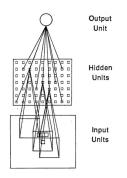
Neocognitron by Fukushima (1980)

पार्ट्याच इतिहोगिरी संख्यान विरह्मावार ।वर्डतान इतिहोगिरी संख्यान विरह्मावार

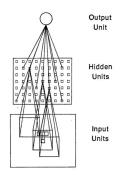
- Neocognitron by Fukushima (1980)
- ② Implements the Hubel and Wiesel's principles


भारतीय प्रीयोगिकी संस्थान विराजय ।वर्डान hatiltare

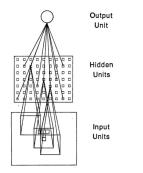
- Neocognitron by Fukushima (1980)
- Implements the Hubel and Wiesel's principles
- ③ Used for hand-written digit recognition


1

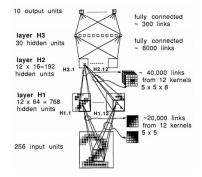
- Neocognitron by Fukushima (1980)
- Implements the Hubel and Wiesel's principles
- ③ Used for hand-written digit recognition
- ④ Viewed as precursor for the modern CNNs



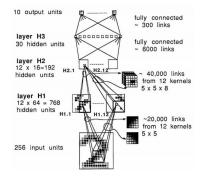
Network for TC problem



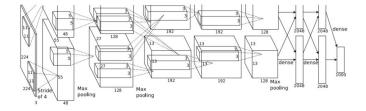
- Network for TC problem
- ② Rumelhart (1988) trained with backprop



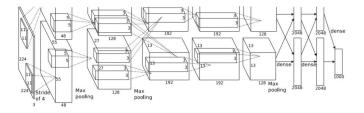
- Network for TC problem
- ② Rumelhart (1988) trained with backprop
- 3 Showed that hidden units learn meaningful representations



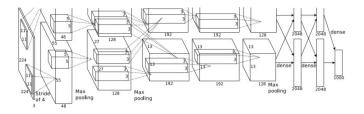
1 LeNet family (Lecun et al. 1989) is a "convent"



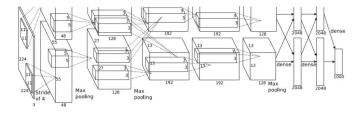
- 1 LeNet family (Lecun et al. 1989) is a "convent"
- ② Very similar to modern architectures



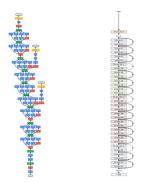
AlexNet (2012)



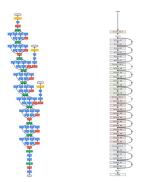
- AlexNet (2012)
- 2 Network similar to LeNet5, but of far greater size



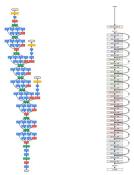
- AlexNet (2012)
- ② Network similar to LeNet5, but of far greater size
- Implemented using GPUs



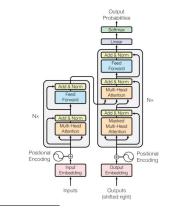
- AlexNet (2012)
- ② Network similar to LeNet5, but of far greater size
- Implemented using GPUs
- ④ Could beat the SoTA image classification methods by a large margin



I AlexNet initiated a trend of more complex and bigger architectures



- Initiated a trend of more complex and bigger architectures
- ② GoogLeNet (2015) contains "inception" modules



- Initiated a trend of more complex and bigger architectures
- ② GoogLeNet (2015) contains "inception" modules
- ③ ResNet (2015) introduced "skip connections" that facilitate training deeper architectures

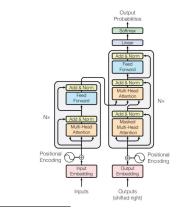

Transformers (2017) are attention-based architectures

Figure credits: Vaswani et al., 2017

- Transformers (2017) are attention-based architectures
- ② Very popular in NLP, and CV

Figure credits: Vaswani et al., 2017

पार्टीय प्रदेशीर्थने संस्थान केरकाव

- Transformers (2017) are attention-based architectures
- ② Very popular in NLP, and CV
- ③ Some of these models are extremely large. GPT-3 has 3 billion parameters (Brown et al. 2020)

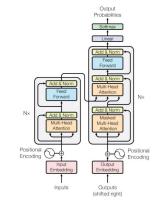


Figure credits: Vaswani et al., 2017

Deep Learning

In Natural generalization to ANNs - Doesn't differ much from the 90s NNs

Deep Learning

- In Natural generalization to ANNs Doesn't differ much from the 90s NNs
- 2 Computational graph of tensor operations that take advantage of
 - Chain rule (back-propagation)
 - SGD
 - GPUs
 - Huge datasets
 - Convolutions, etc.

Deep Learning

• This generalization enables us to build complex networks that work with Images, text, speech and sequences and train end-to-end

ILSVRC Error

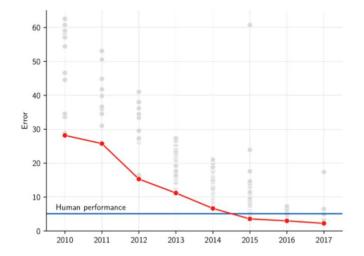


Figure credits: Gershgorn, 2017

Dr. Konda Reddy Mopuri

1 Huge research and progress in ML

- Huge research and progress in ML
- ② Hardware developments CPUs/GPUs/Storage technologies

- Huge research and progress in ML
- ② Hardware developments CPUs/GPUs/Storage technologies
- ③ Piles of data over the Internet

- Huge research and progress in ML
- 2 Hardware developments CPUs/GPUs/Storage technologies
- ③ Piles of data over the Internet
- Collaborative development (open source tools and forums for sharing/discussions, etc)

- Huge research and progress in ML
- ② Hardware developments CPUs/GPUs/Storage technologies
- ③ Piles of data over the Internet
- Collaborative development (open source tools and forums for sharing/discussions, etc)
- ⑤ Collective efforts from large institutions/corporations

- Huge research and progress in ML
- 2 Hardware developments CPUs/GPUs/Storage technologies
- ③ Piles of data over the Internet
- Collaborative development (open source tools and forums for sharing/discussions, etc)
- ⑤ Collective efforts from large institutions/corporations

6 . . .

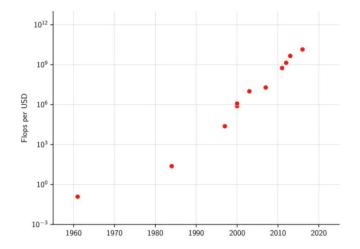
• We have been doing a lot of ML already

- Taxonomy of ML concepts: Classification, regression, generative models, clustering, etc.
- Rich statistical formalizations: Bayesian estimation, PAC, etc.
- Understood fundamentals: Bias-Variance, VC dimension, etc.
- Good understanding of optimization
- Efficient large-scale algorithms

1 Doesn't require a deep mathematical grasp

- Doesn't require a deep mathematical grasp
- 2 Makes the design of large models a system/software development task

- Doesn't require a deep mathematical grasp
- 2 Makes the design of large models a system/software development task
- 3 Leverages modern hardware


- Doesn't require a deep mathematical grasp
- 2 Makes the design of large models a system/software development task
- 3 Leverages modern hardware
- ④ Doesn't seem to plateau with more data

- Doesn't require a deep mathematical grasp
- 2 Makes the design of large models a system/software development task
- 3 Leverages modern hardware
- ④ Doesn't seem to plateau with more data
- Makes the trained models a commodity

Compute getting cheaper

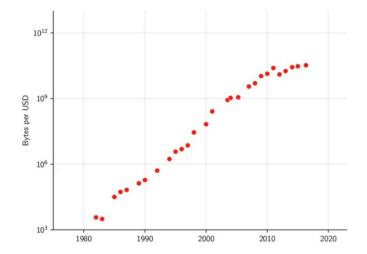


Figure Credits: Wikipedia

Dr. Konda Reddy Mopuri

Storage getting cheaper

Figure Credits: John C Mccallum

Dr. Konda Reddy Mopuri

AlexNet to AlphaGo: 300000X increase in compute

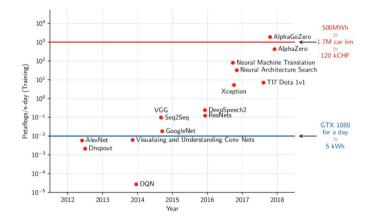


Figure Credits: Radford, 2018. 1 petaflop/s-day \approx 100 GTX 1080 GPUs for a day, \approx 500kwh

Dr. Konda Reddy Mopuri

Datasets

Data-set		Year	Nb. images	Size	
MNIST	(classification)	1998	60K	12Mb	-
Caltech 101	(classification)	2003	9.1K	130Mb	
Caltech 256	(classification)	2007	30K	1.2Gb	
CIFAR10	(classification)	2009	60K	160Mb	
ImageNet	(classification)	2012	1.2M	150Gb	
MS-COCO	(segmentation)	2015	200K	32Gb	
Cityscape	(segmentation)	2016	25K	60Gb	

Data-set		Year	Size
SST2	(sentiment analysis)	2013	20Mb
WMT-18	(translation)	2018	7Gb
OSCAR	(language model)	2020	6Tb

Figure Credits: François Fleuret

Implementation

	Language(s)	License	Main backer
PyTorch	Python, C++	BSD	Facebook
TensorFlow	Python, $C++$	Apache	Google
JAX	Python	Apache	Google
MXNet	Python, C++, R, Scala	Apache	Amazon
CNTK	Python, C++	MIT	Microsoft
Torch	Lua	BSD	Facebook
Theano	Python	BSD	U. of Montreal
Caffe	C++	BSD 2 clauses	U. of CA, Berkeley

Figure Credits: François Fleuret

We use PyTroch for this course

O PyTorch

http://pytorch.org

Dr. Konda Reddy Mopuri